5 research outputs found

    A Reduced Form for Linear Differential Systems and its Application to Integrability of Hamiltonian Systems

    Get PDF
    Let [A]:Y′=AY[A]: Y'=AY with A∈Mn(k)A\in \mathrm{M}_n (k) be a differential linear system. We say that a matrix R∈Mn(kˉ)R\in {\cal M}_{n}(\bar{k}) is a {\em reduced form} of [A][A] if R∈g(kˉ)R\in \mathfrak{g}(\bar{k}) and there exists P∈GLn(kˉ)P\in GL_n (\bar{k}) such that R=P−1(AP−P′)∈g(kˉ)R=P^{-1}(AP-P')\in \mathfrak{g}(\bar{k}). Such a form is often the sparsest possible attainable through gauge transformations without introducing new transcendants. In this article, we discuss how to compute reduced forms of some symplectic differential systems, arising as variational equations of hamiltonian systems. We use this to give an effective form of the Morales-Ramis theorem on (non)-integrability of Hamiltonian systems.Comment: 28 page

    A Characterization of Reduced Forms of Linear Differential Systems

    Full text link
    A differential system [A]:  Y′=AY[A] : \; Y'=AY, with A∈Mat(n,kˉ)A\in \mathrm{Mat}(n, \bar{k}) is said to be in reduced form if A∈g(kˉ)A\in \mathfrak{g}(\bar{k}) where g\mathfrak{g} is the Lie algebra of the differential Galois group GG of [A][A]. In this article, we give a constructive criterion for a system to be in reduced form. When GG is reductive and unimodular, the system [A][A] is in reduced form if and only if all of its invariants (rational solutions of appropriate symmetric powers) have constant coefficients (instead of rational functions). When GG is non-reductive, we give a similar characterization via the semi-invariants of GG. In the reductive case, we propose a decision procedure for putting the system into reduced form which, in turn, gives a constructive proof of the classical Kolchin-Kovacic reduction theorem.Comment: To appear in : Journal of Pure and Applied Algebr

    Formal Laurent Series in Several Variables

    Get PDF
    We explain the construction of fields of formal infinite series in several variables, generalizing the classical notion of formal Laurent series in one variable. Our discussion addresses the field operations for these series (addition, multiplication, and division), the composition, and includes an implicit function theorem
    corecore